Problem 1.14

Suppose f is a function of two variables (y and z) only. Show that the gradient $\nabla f=(\partial f / \partial y) \hat{\mathbf{y}}+(\partial f / \partial z) \hat{\mathbf{z}}$ transforms as a vector under rotations, Eq. 1.29. [Hint: $(\partial f / \partial \bar{y})=(\partial f / \partial y)(\partial y / \partial \bar{y})+(\partial f / \partial z)(\partial z / \partial \bar{y})$, and the analogous formula for $\partial f / \partial \bar{z}$. We know that $\bar{y}=y \cos \phi+z \sin \phi$ and $\bar{z}=-y \sin \phi+z \cos \phi$; "solve" these equations for y and z (as functions of \bar{y} and \bar{z}), and compute the needed derivatives $\partial y / \partial \bar{y}, \partial z / \partial \bar{y}$, etc.]

Solution

Suppose there's a $y z$-coordinate system, and the axes are rotated counterclockwise by an angle ϕ in order to make a new $\bar{y} \bar{z}$-coordinate system. A point represented by (y, z) has the new coordinates (\bar{y}, \bar{z}) given by

$$
\begin{aligned}
& \bar{y}=y \cos \phi+z \sin \phi \\
& \bar{z}=-y \sin \phi+z \cos \phi .
\end{aligned}
$$

Solve this system of two equations for y and z.

$$
\begin{aligned}
& y=\bar{y} \cos \phi-\bar{z} \sin \phi \\
& z=\bar{y} \sin \phi+\bar{z} \cos \phi
\end{aligned}
$$

The gradient of a scalar function f in the $\bar{y} \bar{z}$-coordinate system is

$$
\bar{\nabla} f=\left\langle\frac{\partial f}{\partial \bar{y}}, \frac{\partial f}{\partial \bar{z}}\right\rangle .
$$

Use the chain rule to determine its components in terms of the old variables.

$$
\begin{aligned}
& \frac{\partial f}{\partial \bar{y}}=\frac{\partial f}{\partial y} \frac{\partial y}{\partial \bar{y}}+\frac{\partial f}{\partial z} \frac{\partial z}{\partial \bar{y}}=\frac{\partial f}{\partial y}(\cos \phi)+\frac{\partial f}{\partial z}(\sin \phi) \\
& \frac{\partial f}{\partial \bar{z}}=\frac{\partial f}{\partial y} \frac{\partial y}{\partial \bar{z}}+\frac{\partial f}{\partial z} \frac{\partial z}{\partial \bar{z}}=\frac{\partial f}{\partial y}(-\sin \phi)+\frac{\partial f}{\partial z}(\cos \phi)
\end{aligned}
$$

These equations can be represented in matrix form as follows (Eq. 1.29).

$$
\binom{\frac{\partial f}{\partial \bar{y}}}{\frac{\partial f}{\partial \bar{z}}}=\left(\begin{array}{cc}
\cos \phi & \sin \phi \tag{1.29}\\
-\sin \phi & \cos \phi
\end{array}\right)\binom{\frac{\partial f}{\partial y}}{\frac{\partial f}{\partial z}}
$$

Therefore, the gradient transforms under rotations as a vector.

